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INTRODUCTION

Although the incidence of floor vibration problems appears
to be on the rise,1.2 the use of mechanical damping devices to
control vibrations is limited. In a recent survey of vibration
control methods, Murray3 reports that passive-mechanical
damping methods, including viscous damping, visco-elastic
damping, and tuned-mass dampers, have often gone untried
outside the laboratory or have had marginal impact in actual
buildings. This is particularly unfortunate because
mechanical dampers can sometimes control floor vibrations
more cheaply than structural stiffening, and are often the only
viable means of vibration control in existing structures.

This paper details the successful implementation of a
tuned-mass damping system to reduce the steady-state
vibrations of the longspan, cantilevered, composite floor
system at the Terrace on the Park Building in New York
City. The experience with this implementation suggests that
tuned mass dampers (TMDs) can be successfully employed to
control steady-state vibration problems of other composite
floor systems. The potential for general application of TMDs
in composite floor systems is discussed, and areas for further
research are suggested.

BACKGROUND

The Terrace on the Park Building was designed by The Port
Authority of New York and New Jersey as its exhibition
building for the 1964 Worlds Fair (Fig. 1). The building
features elliptical promenade and roughly-rectangular
ballroom levels, both suspended six floors above the ground
on four steel supercolumns. The columns support a cross-
shaped pattern of floor-girders and an elliptical ring girder,
which in turn support a radial set of cantilevered floorbeams
(Fig. 2). The floorbeams span between the floor and ring
girders, and cantilever from the ring girder to the face of the
building (Fig. 3). The ballroom sub-floor is a reinforced
concrete deck-formed slab, resting on top of and periodically
welded to the floor-beams.
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At the close of the Fair, the Authority turned over the
building to the New York City Department of Parks and
Recreation, which leased it to a private caterer to generate
income for the city. The caterer partitioned the ballroom level
symmetrically into four dining/dancing halls at the corners of
the building, each served by an existing, central kitchen area.
Individual halls were arranged with dining tables near the
kitchen (and the center of the building); bandstands and
dance floors were located at the tip of the cantilevered floors
(Figs. 2 and 3).

As soon as the building's cantilevered main floors were
used as dining and dance halls, guests complained about the
structure's vibrations. Preliminary vibration tests performed
during dance events showed that the floor accelerations and
displacements sometimes reached 0.07G* and 0.13 inches,
respectively. Observations of sloshing waves in cocktail
glasses and chandeliers that bounced to the beat of the band
gave credence to these measurements. Observations made
and complaints logged aside, the measured vibration—as
interpreted by the modified Reiher-Meister scale4 or more
recent work by Allen1—are generally recognized as
unacceptable for dining/dance floors. Floor displacements of
0.13 inches are considered "Strongly Perceptible," as
measured on the modified Reiher-Meister scale; Allen's
recommendations

* A "G" is equal to the acceleration of a body in a vacuum due to the force
of gravity. One G = 32.2 ft/second.2

Fig. 1. Terrace on the Park Building—general view.
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limit acceptable floor accelerations in combined
dining/dancing environments to about 0.03G.

Preliminary free vibration tests of the structure found the
first natural frequency of a typical quadrant of the ballroom
level floor (corresponding to one dining/dance hall) to be
about 2.3 Hz. This very low frequency is well below the
recommended levels for floors whose vibrations are
controlled by structural stiffness,1,3 and corresponds closely
to the beat of many dances.5

Besides the low frequency of the ballroom-level floors,
their vibrations were being exacerbated by the location of the
dance floors, which maximized the amount of vibrations that
dancers were causing (Figs. 3 and 5). Moving the location of
the dance floors toward the center of the building clearly
would reduce the structure's vibrations. This remedy was
completely unacceptable to the caterer, who made the
sensible point that, located between the kitchen and dining
areas, the dance floors would block movement between the
two and obstruct the exits.

In 1988, after studying various structural stiffening
schemes they could not afford to construct, the Parks
Department decided to explore solving the vibration problem
with mechanical damping devices. The tuned mass damper
(TMD) solution was developed by Weidlinger Associates and
Professor Vaicaitis after we performed a detailed study of the
structure's dynamic characteristics, the forcing function
shaking it, and an assessment of various nonstructural
remedies.

DYNAMIC CHARACTERISTICS OF THE
STRUCTURE

First, we began analytical studies of the building's floor
system to determine its dynamic characteristics. A
preliminary calculation of the first resonant frequency of the
longest cantilevered floorbeams (shown on Fig. 3), was
performed, using an equation by Murray and Hendrick:6

[ ]f K gEI WLt= 3
1

2 , (Hz) (1)

Fig. 2. Ballroom (6th floor) plan.

where:
f = the frequency of vibration of the floor
K = a coefficient depending on ratio of overhang to

backspan [tabulated in Ref. 6]
g = 386.4 in/s2

E = modulus of elasticity
It = transformed moment of inertia
W = weight supported by tee beam
L = length of cantilever

Assuming composite action of the floorbeam and
concrete deck, Eq. 1 agreed with the earlier rough
measurements taken at the structure, which showed that the
floor's first natural frequency of vibration was about 2.3 Hz.
Although for most of their length, the bottom flanges of the
floorbeams are in compression, the composite floorbeam
assumption made sense because the deck was significantly
reinforced, its steel underside was frequently welded to the
floorbeams, and the ratio of live load to dead load was very
small, reducing the tendency for the concrete to crack and act
independent of the floorbeams.

Next, a detailed, finite element model of a typical floor
quadrant (corresponding to one dining/dance hall) was
created, to determine the fundamental floor frequency more
accurately, compute the associated mode shape, and see if
higher floor frequencies and mode shapes were being excited.
The floorbeams were modeled with composite bending
properties and the concrete deck was modeled with plate
elements. The mass included all the structural loads,
nonstructural loads such as windows, mullions, partitions,
and hung ceilings, and about 15 percent of the 100 psf, code-
prescribed live load.

Free vibration analysis of this model showed that the
reinforced concrete deck and ring girder tied the floor
together, making an entire quadrant of the ballroom level
vibrate as a unit. The fundamental mode shape described a
continuously deformed floor, with maximum deflection at the
extreme cantilevered corner, and monotomically decreasing
in deformations toward the ring and floor girders. The first
frequency of the floor system was predicted at 2.22 Hz. The
second resonant floor frequency was found at 3.9 Hz.

While the structure was being examined analytically, we
also measured the natural frequencies of each floor quadrant
(corresponding to one dining/dance hall) of the actual
structure, the mode-shape associated with the first natural
frequency,

Fig. 3. Section through ballroom floor (Section 1 on Fig. 2).
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Table 1.
Experimentally Determined Floor Frequencies and Damping

Fundamental Second
Quadrant Frequency Frequency Damping
(Dining/Dance all) (Hz) (Hz) % of Critical
Rose 2.23 3.75 2.8
Paradise 2.31 — 3.0
Crystal 2.27 3.75 3.0
Regency 2.46 — 3.6
Computer model 2.22 3.91 —

and the damping in the first mode. Using a variable speed,
largemass shaker, our prediction of the floor's resonant
frequencies was confirmed. By simultaneously recording
accelerations at a number of locations along the floor, we
also confirmed the computer model's prediction of the first
mode shape. Using the half power method,7 the damping in
the first mode was determined. The measured frequencies and
experimentally obtained damping values for each floor
quadrant are given in Table 1. The floors were typically
covered with wood, and supported a lightweight steel-panel
building-envelope system from the bottom flanges of the
floor-beams.

The most important empirical data was obtained during
actual dancing. Spectral transforms of the acceleration time-
histories obtained during dancing showed that each floor
quadrant was vibrating almost exclusively at its first mode
(Fig. 4). This result substantially simplified our later
analyses and helped us determine an appropriate damping
method.

The peak root mean square (RMS) acceleration we
measured at the extreme cantilevered corner of a
dining/dance hall was 0.06 G, recorded during a rock and roll
dance. Assuming the floor to be vibrating in its first mode,
we used this measured peak acceleration to determine the
maximum floor displacement at the same location, With the
floor vibrating in its first mode, both the displacement, y2(t),
and acceleration, ( )y t2 , of the tip of the floor are essentially

Fig. 4. Typical spectral response (floor excited by dancing).

 sinusoidal functions in time. Their maximums are related by:

y y2 2
2

max max /= ω (2)
where:

ω = the frequency of vibration of the floor, in radians per
second

y2 max = the maximum tip displacement at this frequency

maxy2 = the measured RMS floor acceleration

This gave an estimated maximum floor displacement of
about 0.11 inches corresponding to the measured 0.06G peak
RMS acceleration.

ASSESSMENT OF MECHANICAL VIBRATION
CONTROL SYSTEMS

The decision to employ tuned mass dampers was influenced
by the functional layout and geometry of the structure; the
client's budget; the fact that the floors were being excited
primarily at their first resonant frequencies; the large
amplitudes of floor motion; and the light structural floor
damping.

Simple Passive Dampers

Simple passive dampers, including viscous, friction, and
visco-elastic systems, rely on a damper mounted between a
vibrating structure and a stationary object to dissipate
vibration energy as heat. As the two systems move relative to
each other, the simple passive damper is stretched and
compressed, reducing the vibrations of the structure by
increasing its effecting damping. At the Terrace, there was no
non-moving element nearby to attach a damper to, so these
systems were rejected.

Tuned Mass Dampers

Tuned mass dampers (TMDs) work by fastening a mass-
block to a structural component (such as a floor) via a spring
(Fig. 3). This system is set up so that, when the floor vibrates
at a resonant frequency (which could be caused by dancing,
for example), it induces analogous movement of the mass

Fig. 5. Floor deflection in first mode shape (Section 1 in Fig. 2).

where:
Ff(t) = idealized, periodic forcing function on dance floor
Yt= deflection of tip of floor in first mode
Yf = deflection of floor under forcing function
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block and spring. By the conservation of energy, the TMD
motion in turn reduces the amplitude of the floor's vibration.
A damping device (dashpot) is usually connected in parallel
with the spring between the mass-block and floor, increasing
the TMD's effectiveness over a range of frequencies and
taking a small amount of mechanical energy out of the system
as heat.

Because each TMD is "tuned" to a particular resonant
frequency, individual TMDs need to be installed for each
excited floor frequency. Because they rely only on floor
vibrations to operate, they do not need to be fastened to a
nearby stationary object. By the same token, TMDs are most
effective when located where the floor's amplitudes are the
greatest.

TMDs were considered the only viable passive damping
system to employ at the Terrace because they did not require
fastening to a nearby stationary object. They were also
particularly well suited to the Terrace because there was only
one floor frequency per ballroom to damp, reducing the
required number of TMDs, and the TMDs could be installed
at locations where the floor amplitudes were largest (Fig. 5),
maximizing their efficiency.

Active Mass Dampers

Active mass dampers, which are computer controlled and can
also be configured to work without relying on the relative
motion between the floor and a stationary object, were also
considered. These systems, currently the subject of much
research for controlling wind and earthquake induced
vibrations,8 are a generally attractive solution to vibration
problems because they are so effective. These systems were
rejected for the Terrace on the basis of their high installation
cost, and their need for regular continuing maintenance,
which could not be ensured over the life of the structure.

DESIGN OF THE TUNED MASS DAMPERS

The TMD design process began by creating an "equivalent-
displacement" one-degree-of-freedom system, representing
the dynamic behavior of one point of a typical floor quadrant
when vibrating in its first mode. The one-mode model was
justified by the experimental data taken in each floor
quadrant, which (as noted above) showed that the ballroom
floors were vibrating almost exclusively in their first mode.
A TMD was then added to this model, creating a two degree
of freedom system. The performance of this system,
representing an actual floor quadrant and TMD, was used to
optimize each TMD's mass, spring stiffness, and damping.

Equivalent Displacement, One Degree of
Freedom Floor Model

Figure 5 shows, for a typical quadrant, the line of maximum
floor deflection in the first mode (cut at section 1 in Fig. 2).
This characteristic mode shape and its associated frequency
provided the basis for the equivalent, one degree of freedom
(1 DOF) floor-vibration model shown in Fig. 6. To calibrate
the 1 DOF system, we required that its free vibrations have

the same period as a typical floor quadrant's, vibrating in its
first mode. This requirement is stated mathematically by:

( / )k m f2 2 1= ω (3)

where k2 and m2 are as defined in Fig. 6 and ωf1 is the first
resonant frequency of the floor, in radians per second
(rad/sec).

The calibration for mass and stiffness was completed by
dictating that the maximum dynamic displacement of the 1
DOF system would be the same as the tip of the floor
constrained to vibrate in its first mode shape, while being
forced by a periodic, concentrated load at its tip; i.e., y2 max

(Fig. 6) = yt max (Fig. 5). Using the free-vibration computer
model, the 1 DOF system's mass, m2, was found by:

m u d t2
2= ×/ , ( /kips sec in)2 (4)

where u is the mass-normalized generalized mass of the first
mode of the floor system, and dt is the associated modal
displacement at the tip of the floor. (This equation is derived
in Appendix A.)

As calculated by Eq. 4, m2 is called the "equivalent-
displacement generalized floor mass." Using this value for
m2, k2 was found from Eq. 3.

We also computed k2 and m2 from our experimental data.
First, we assumed the floor would respond only in its first
mode when shaken by a harmonic forcing function of a

Fig. 6. 1 DOF floor model.

where:
m2 = displacement normalized generalized mass of floor system

in first mode
k2 = displacement normalized generalized stiffness of floor

system in first mode
c2 = damping in first mode

F2(t) = idealized, periodic, dance-floor equivalent forcing function
y2 = yt = deflection of tip of floor in first mode
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Table 2.
Stiffness and Mass of 1 DOF Floor Models

k2 m2 c2 ζζ2

(kips/in.) (kips) (kips*s/in.) (% of Critical)

Equations 4, 3, 6 197 389 .874 3.1%
(Computer) (Determined from (Chosen to match

choice of ζ2) experimental data)

Equations 12, 10 205 406 .912 3.1%
(Experimental) (Determined by ζ2)

frequency equal to the floor's first resonant frequency [F(t)
=Fosin(ωf1t), where ωf1 is the first resonant frequency of the
floor quadrant (rad/sec) and t = time (sec)]. In this case, the
floor behaves as a one degree of freedom system, whose
steady-state response is given by:

y t F t h ko f2 1 22( ) sin( ) / ( )= +ω ζ   (Ref. 7) (5)

where:
Fo = the amplitude of the forcing function driving the floor at its

cantilevered tip
y2 = the peak floor response measured at the same location
ωf1 = the resonant frequency of the floor
h = a phase angle
k2 = the equivalent displacement generalized stiffness of the

floor
ζ = the measured damping of the floor, expressed as a percent of

the floor's critical damping, cc*

from which:

y F ko2 22max / ( )= ζ , (in.) (8)

and:

k F yo2 22= / ( )maxζ , (kips/in.) (9)

and m2 is then found from Eq. 3.

The damping included in the 1 DOF model (ζ) was 3.1
percent, corresponding to the average of the four
experimentally determined values given in Table 1. This is a
bit lower than what would be expected based on published
values.4,9 Using Eqs. 6 and 7, the absolute floor damping, c2,
was found to be 0.874 kip-seconds/in.

k2, c2 and m2, computed both analytically and
experimentally, are given in Table 2. The computer generated
values were used in the subsequent analysis and design work.

The 1 DOF system's forcing function, F2(t), was also
calibrated to approximate the effect of dancing on the actual

* For the 1 DOF floor model, ζ and cc  are related by:
ζ=c2/cc   (Ref. 7) (6)

where
c k mc = 2 2 2( / )  (kip * sec/in.) (7)

structural floor. The function was assumed to be sinusoidal
(which is arguably a fair approximation for dancing1), i.e.:

F2(t) = Fo sin(ω t),   (kips) (10)

The force amplitude (Fo) was adjusted so that at
frequencies (ω ) close to the beat of previously measured
dancing at the Terrace, the maximum steady-state
acceleration of the 1 DOF model would match the RMS peak
acceleration at the tip of the actual floor during an
instrumented dance event.

Two Degree of Freedom, Floor-TMD Model

After the equivalent-displacement 1 DOF system was
developed, tuned mass dampers were added, creating a two
degree of freedom (2 DOF) system (Fig. 7). Using this
system, the TMD parameters of mass (m1), stiffness (k1), and
damping (c1), were optimized to reduce the dynamic
displacement of the floor (y2), due to the forcing function
F2(t), representing dancers on the real structural floor.

Fig. 7. 2 DOF floor-TMD model.

where:
m1 = mass of TMD
k1 = TMD spring stiffness
c1 = TMD damping
y1 = displacement of TMD
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Table 3.
Summary of TMD Parameters *

Trial Optimum Initial Construction Final Tuned
Quantity Value Value Value
Mass, m1 (kips) 18.0 19.0 18.4

(Controlled by 20 kip
floor beam capacity)

Damping, C1 0.19 0.19 0.15
(kips* s/in.) Equation 13
Spring stiffness, k1 8.3 8.8 8.8
(kips/in.) Equations 12, 11 (Cannot be field

adjusted)
* Values are presented for the Rose floor quadrant whose measured natural frequency without TMDs
installed was 2.23 Hz. Results for other quadrants are similar.

The TMDs needed to minimize the floor's vibrations
without using so much mass that the existing floorbeams
would be overstressed. Although to a point TMDs become
more effective with increased mass,10 calculations showed
that the floorbeams supporting the TMDs would be
overstressed with masses greater than about 20 kips located
at tips. Therefore, 18 kips became our trial-optimal TMD
mass. This corresponds to a mass ratio (m1 / m2) of about 4.6
percent.

Because each actual ballroom floor was responding
primarily in its first mode shape, the TMDs needed to be
operating near the associated resonant frequency to maximize
the amount of energy shifted from the vibrating floor to
themselves. Various approaches to optimizing a TMD's
natural frequency have been reported.11,12 As a start point, we
used the approach outlined by Reed,12 in which the natural
frequency of the TMD attached to a fixed base is denoted ω1.
Then:

ω1 1 1= ( / )k m ,     (rad/sec) (11)

where k1 and m1 are the spring-stiffness and mass,
respectively, of the TMD.

And Reed's optimum value for ω1 is given by:

ω1,optimum = 1 / [1 + (m1 / m2)],    (rad/sec) (12)

where m2 is the equivalent-displacement generalized floor
mass defined above.

With m1 and m2, determined, ω1optimum was found by Eq.
12, and k1 was determined by Eq. 11. We also used Reed's
method for obtaining a trial value of optimum damping, c1:

[ ]c m k m moptimum1 1 2 1 22 1, / ( / )= + , (kip×sec/in.) (13)

The trial-optimum values, k1, c1, and m1, computed using
Eqs. 11 through 13, are summarized in Table 3.

Starting with the maximum safe mass and predicted-
optimum values for c1 and k1, the 2 DOF model of the floor-
TMD system (Fig. 7) was analyzed. The system's equations
of motion are:
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Where ω  is the frequency of the forcing function (rad/sec).
These equations were used to: check the validity of the

TMD parameters given in Eqs. 12 and 13; predict the
reduction in floor acceleration caused by the TMDs; and
estimate the maximum accelerations and relative
displacements of the TMD mass (m1). Because Eq. 14 cannot
be solved modally (due to the high damping in the system),
they were integrated numerically with the Runge-Kutta fourth
order method.13 For values of ω  between 1 and 8 Hz, time
histories were produced and maximum values of y2, y2 , and
y2 – y1 were recorded.

Because it was our experience that TMDs needed to be
adjusted in the field, we designed the actual TMDs to be
"tuned" for frequency and damping after installation. This
was done by varying the TMDs' mass (m1) with 200 pound
steel plates, and adjusting its damping (c1) with variable
energy dissipation dashpots. Two types of variable energy
dissipation viscous dashpots were tested at the Carleton Lab
of Columbia University's Engineering School (Fig. 8), and
found to need a minimum stroke (in the form of enough
relative floor-TMD mass movement) of about 0.05 inches to
be effective. In practice, the relative motion between the
TMD and floor (y2 – y1 in Fig. 7) is reduced with increasing
TMD mass (m1) and increased damping (c1). To obtain a
desired stroke, it was found by manipulating m1 and c1 in Eq.
14 that the TMDs performed better if their damping was
slightly decreased than if their mass was reduced. Thus,
ensuring the stroke of the TMDs was large enough effectively
put an upper bound on their damping.

The TMD stiffness, k1, was limited by the properties of
commercially available springs. The spring stiffness, of
course, could not be modified in the field, which did not pose
much of a problem because the natural frequency of the
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TMDs was controlled by adjusting their mass, as described
above.

The TMD parameters, m1, c1, and k1, which were used
for their initial construction, are given in Table 3. These
values were adjusted from the trial-optimum values as
required by the constraints on spring stiffness, damping, and
mass noted above. The corresponding predicted performance
of the TMDs is shown in Fig. 9. Each point on the graph
represents maximum steady state floor displacement
corresponding to the calibrated forcing function operating at
frequency ω. The curve predicted that the TMDs would
reduce dance-induced floor vibration by a maximum of 70
percent, corresponding to dancing at about 2.2 Hz.

PERFORMANCE OF THE AS-BUILT SYSTEM

In 1991, one TMD was installed in the corner closet of each
dining/dance hall (Fig. 3). A typical system is shown in Fig.
10. Each TMD was tuned for optimum frequency and
damping by using a variable-speed, large mass shaker to
excite the floor at a range of frequencies while monitoring
both floor and TMD accelerations. During an actual dance
event, floor accelerations were monitored first with the
dampers locked into place, then free to move. The final,
"tuned" TMD parameters are summarized for one floor
quadrant in Table 3. Results for other quadrants are similar.
The results of the shaker and dance-event tests are given in
Figs. 11 and 12 respectively. Our measurements of TMD
performance during dance events showed that the TMDs
reduced ballroom floor vibrations by at least 60 percent. The
difference between the

Fig. 8. Viscous dashpot work per stroke at various energy
absorption settings.

("Kinechek" and "Cushioneer" refer to the manufacturer's
proprietary names of tested models. The energy absorbed by the

dashpots per stroke is adjustable. Different "preset" curves
correspond to different dashpot settings.)

predicted 70 percent reduction and the 60 percent in-situ
performance is ascribed to the difference between the actual
and analytical forcing functions (dancers and a sine-wave,
respectively), and the floor's vibrations in its second mode
shape, which the TMDs were not designed to reduce. No
floor vibration complaints have been reported to us since the
TMDs were installed.

The cost of constructing the four TMDs was $220,000.
This is less than 15 percent of the estimated construction cost
of structural stiffening (with new columns between the
ballroom floors and the ground) recommended for the Terrace
in 1987.14

SUMMARY—CONCLUSIONS

The TMD implementation described in this paper
demonstrates their successful use in substantially reducing
the vibrations of an existing composite floor system. The
critical reasons for the success of the system are: its
tunability, which helped ensure that the theoretically
predicted performance could be approximated by the actual
as-built system; and the cost of the system, which was about
an order of magnitude less than the cost of recommended
structural corrective measures.

Although the methods used to analyze the case-study
floor system and design its TMDs are very general, and can
be applied in principle to many composite floor systems, the
effective use of TMDs in structures with higher damping
values and lower maximum floor displacements may prove
troublesome. It has been claimed that it is generally difficult
to make TMDs useful in structures with high natural
damping. The adjustable viscous dashpots used in this case-
study perform marginally at small strokes, suggesting they
would not perform adequately in floors whose amplitudes are
small. However, other types of damping, which are field
tunable and

Fig. 9. Maximum, steady-state floor amplitudes at tip of floor, as
predicted by Eq. 14. (TMD parameters correspond to "initial

construction values" in Table 3.)
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may perform well at small amplitudes, have been used in
TMD applications,15 and warrant further study. It should also
be noted that, although floor frequency itself should not
impact the viability of TMDs, most composite floors have
frequencies much higher than the fundamental floor
frequency at the Terrace. This may affect the choice of
hardware in other installations, including the types of springs
and dashpots used.

The success of the field-tuned case-study system
presented in this paper, and the small number of mechanical
damping systems installed in actual buildings today, suggest
that damping systems are not being used as often as they
possibly should be. Increased use of passive damping systems
requires that structural engineers better understand their
overall performance, and the limitations of their actual
components (such as dashpots). With this in mind, further
research in the performance of passive damping devices in
actual floor systems is recommended in the following areas:

• In-depth studies of TMD dashpots, including linear
viscous and Coulomb friction types.

• Analysis of tuned-in-the-field TMD effectiveness in
floor systems with smaller dynamic displacements.

• Analysis of tuned-in-the-field TMD effectiveness in
reducing transient vibrations.

Fig. 10. TMD elevation.

• Comparison of the effectiveness of TMDs and other
passive and active damping systems, in controlling
both transient and steady-state vibrations, in terms of
both performance and cost.

APPENDIX A—DERIVATION OF EQ. 4

Applying free vibration analysis techniques to a finite
element model of the floor system, the following quantities
can be computed:16

ω1 = the first resonant floor frequency
d =  the associated mode-shape column vector
M = the mass matrix of the floor system
K = the stiffness matrix of the floor system
u = the generalized mass of the first mode = d MdT

z = the generalized stiffness of the first mode = d KdT

Leaving damping aside for simplicity, if the floor is
moving in only its first mode, forced by the function F(t), at a
particular node, n. then it can be shown7.17 that the floor
movement at any point is described by the equations:

u z d F tn n ( )α α+ = (A1)

x d= α (A2)

Fig. 11. Peak RMS floor response at tip of floor, subject to
sinusoidal forcing function. Test of actual floor system with field-

tuned TMD (Crystal Quadrant).

Fig. 12. Measured floor acceleration at tip of floor due to dancing
with field-tuned TMD.
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Where α is called the generalized coordinate of the first
mode, and x  is the vector of nodal coordinates from the
finite element formulation.

The equation of motion of the 1 DOF, equivalent
displacement model (Fig. 6) is:

m2y2 + k2y2 = F(t) (A3)

By definition of the 1 DOF model, k2 / m2 = z / u. By
specifying that y2 = xn when F(t) = fn(t), these constraints
lead to:

y2 = dnα (A4)

uy zy d F t d F tn n n( ) ( )2 2
2 2+ = = (A5)

Dividing this by dn
2 , and comparing to Eq. A3 yields m2 = u

/ dn
2 . Noting that, in the case of the Terrace, dn = dt, and

making this substitution yields Eq. 4.
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